A CALL TO ACTION

MONTANA'S INFRASTRUCTURE TOWN HALL MEETING

Hosted by MEDA and Event Partners
Thank You to Our Generous Sponsors
AGENDA SUMMARY

MT Infrastructure Town Hall Meeting

2:00 PM—Welcome and Purpose of the Meeting
2:05 PM—Important Background for Today’s Dialogue
2:40 PM—Real Opportunities: A Dialogue on What Infrastructure Investment Means to Montana
3:30 PM—Breakout Discussions—Developing a sustainable approach to infrastructure investment is key to Montana’s economic growth.
4:10 PM—Reports from Breakout Discussions
4:45 PM—Define Next Steps
5:00 PM—Adjourn
MT Infrastructure Town Hall Meeting

Important Background for Today’s Dialogue

- 2:05 – 2:15 The Montana’ Infrastructure Report Card
 Shoots Veis

- 2:15 – 2:25 Investment is Key: Map of the 2015 Infrastructure Projects and the Stories Behind the Projects
 James Grunke

- 2:25 – 2:35 A Public/Private Partnership Success Story: The Shiloh Crossing
 Steve Corning

⇒ 2:40pm Real Opportunities – What Infrastructure Investment Means to Montana
Montana Infrastructure Report Card
Shoots Veis
An independent review of the current state of infrastructure needs, capability and funding in Montana by the Montana Section of the American Society of Civil Engineers
It was Mike Mulligan and Mary Anne and some others who smoothed out the ground and filled in the holes.
Mike Mulligan and Mary Anne had been digging together for years and years. Mike Mulligan took such good care of Mary Anne she never grew old.
It was Mike Mulligan and Mary Anne
and some others
who lowered the hills
and straightened the curves
to make the long highways for the automobiles.
Real Infrastructure Investment as Percentage of Real Potential GDP
Percentage of GDP Spent on Infrastructure

1%

0.06%
WHY a Montana Infrastructure Report Card?
WHY a Montana Infrastructure Report Card?

Health and Safety

Environmental Protection

Quality of Life

Economic Vitality
WHAT a Report Card Should Do?
WHO - Montana Report Card Committee
ASCE Report Card Committee

- Melissa Matassa-Stone, PE, CFM, LEED AP, M. ASCE, WGM Group Inc.

- Dave Aune, PE, Great West Engineering, Inc.
- Stephanie Beckert, PE, Great West Engineering, Inc.
- Bob Church, PE, Great West Engineering, Inc.
- Erin Claunch, PE, City of Billings
- John Connors, PE, CFM, Montana DNRC
- Jerry Davis, PE, M. ASCE
- Mike Day, PE, Territorial Landworks, Inc.
- Kate Dinsmore, WGM Group, Inc.
- Philip Forbes, PE, M. ASCE, Morrison-Maierle, Inc.
- Loran Frazier, PE, M. ASCE, WGM Group, Inc.
- Kurt Hafferman, PE, M. ASCE, Billmayer & Hafferman
- Jeremy Keene, PE, WGM Group, Inc.
- Mike Kynett, PE, M. ASCE, Morrison-Maierle, Inc.
- Chris Laity, PE, Great West Engineering, Inc.
- Michele LeMieux, PE, Montana DNRC
- Kristyn Mayernik, PE, A.M. ASCE, Morrison-Maierle
- Roger Millar, PE, AICP, F. ASCE, Smart Growth America
- Matthew Mudd, PE, M. ASCE, Great West Engineering
- Scott Murphy, PE, M. ASCE, Morrison-Maierle, Inc.
- Craig Nowak, PE, F. ASCE, Morrison-Maierle, Inc.
- Jon Pederson, PE, NewFields Companies, LLC
- Matt Schmidt, PE, SE, Beaudette Consulting Engineers
- Larry Schock, CFM, Montana DNRC
- Stephanie Seymanski, PE, M. ASCE, Morrison-Maierle
- Jeff Smith, PE, LEED AP, WGM Group, Inc.
- Shoots Veis, PE, M. ASCE, Interstate Engineering
- Bill Wiegand, PE, M. ASCE, Morrison-Maierle, Inc.
- Ezra Williams, PLA, CPSI, CTA Architects Engineers
Research Used for Report Cards

- State of Montana Agency Reports & Budgets
- Federal Reports with State Breakouts
- Economic Impact Reports (State, etc.)
- Surveys of Infrastructure Owners/Operators
- Interviews with Agency Staff
ASCE’s Report Card Grading Criteria

- Capacity
- Condition
- O&M
- Funding
- Future Need
- Public Safety
- Resilience
- Innovation
What do ASCE’s grades mean?

A
EXCEPTIONAL: FIT FOR THE FUTURE

B
GOOD: ADEQUATE FOR NOW

C
MEDIocre: REQUIRES ATTENTION

D
POOR: AT RISK

F
FAILING/Critical: UNFIT FOR PURPOSE
Report Card IS/Report Card ISN’T

Report Card IS:
• 1st Montana-Specific Report Card (Baseline)
• Overall Assessment
• Provides Recommendations and Range of Solutions to “Raise the Grade”

Report Card ISN’T:
• Review of Specific Programs
• List of Projects/Infrastructure Most in Need of Support/Funding
2014 REPORT CARD FOR MONTANA’S INFRASTRUCTURE

C-GPA
<table>
<thead>
<tr>
<th>Grade</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-</td>
<td>Schools</td>
</tr>
<tr>
<td>D+</td>
<td>Wastewater</td>
</tr>
<tr>
<td>C-</td>
<td>Dams</td>
</tr>
<tr>
<td>C-</td>
<td>Drinking Water</td>
</tr>
<tr>
<td>C</td>
<td>Irrigation Canals</td>
</tr>
<tr>
<td>C</td>
<td>Transportation</td>
</tr>
<tr>
<td>C+</td>
<td>Transit</td>
</tr>
<tr>
<td>B-</td>
<td>Solid Waste</td>
</tr>
</tbody>
</table>
2014 REPORT CARD FOR MONTANA’S INFRASTRUCTURE

D- Schools

68%
The 1970's

1972 – Atari Introduces PONG

1975 – Microsoft was founded

1979 – Sony releases the Walkman
On July 20th, 1969, Apollo 11's Eagle landed on the Moon and Neil Armstrong became the first person to walk the lunar surface.

Approximately how much more memory does Apple's iPhone 5S have compared with the Apollo guidance computer?
A, 100,000 times more?
B 624,000 times more?
C 1.8 million times more?
D 5.4 million times more?
The correct answer was "C," approximately 1.8 million. Apollo's guidance computer had a memory of just 36 kilobytes. The Apple iPhone 5s has a memory of 64 million kilobytes.

Weighing at 70 pounds, the guidance computer was a marvel of innovation in its day, helping to command the nearly 240,000-mile journey from Cape Kennedy, Florida, to the surface of the moon. But it couldn't do what an iPhone can do.
One Montana School Superintendent said his school doesn’t have light switches and instead teachers turn classroom lights on with circuit breakers from 1950 for which they can’t find replacement parts.
Montana Infrastructure Report Card

Health and Safety

Quality of Life

Environmental Protection

Economic Vitality
2014 REPORT CARD FOR MONTANA’S INFRASTRUCTURE

D+ Wastewater

300%

$62 \rightarrow $200
The 1980’s

1981 – IBM Introduces the 5150

1984 – Apple unveils the Mac

1985 – Microsoft introduces Windows 1.0
Montana Infrastructure Report Card

Health and Safety

Environmental Protection

Quality of Life

Economic Vitality
C- Drinking Water

$12,000,000,000

$80,000,000

80 Years
2014 REPORT CARD FOR MONTANA’S INFRASTRUCTURE

C Transportation

Montana’s top 20 transportation challenges and necessary fixes have a combined price tag of $7.4 billion

$1.2 billion in federal, state and local money is available to fix them
C Transportation

65% of people don’t want to pay higher taxes to cover the cost of repairs.
Figure 1: Purchasing Power of the Gas Tax Has Dropped 28 Percent Since 1997

Decline is Due Mostly to Construction Cost Inflation

Source: ITEP analysis of data from the Federal Highway Administration (FHWA)
Montana Infrastructure Report Card

Health and Safety

Environmental Protection

Quality of Life

Economic Vitality
RAISING THE GRADES
4 KEY SOLUTIONS

1. Innovate As We Replace
2. Keep Up Infrastructure Education Efforts
3. Have a Plan and Fund For the Future
4. Support Federal Programs That Are Good for Montana
• Please take a moment to paste a link to the Montana Infrastructure Report Card website on your Facebook, LinkedIn or Twitter page.

• Suggested Post: I enjoyed listening to a presentation on Montana’s Infrastructure Report Card today. You can look over the report at http://www.infrastructurereportcard.org/montana/
8 Things You Probably Didn’t Know About Montana

1. Montana’s Water Pipes Could Stretch From Billings to Miami – Roundtrip
2. Some Pipes Under Original Montana Plots Might Be Original Too
3. Montana’s Rough Roads Are Rough On Budgets
5. Old Dams Don’t Necessarily Have to Be Inspected
6. Transit Funding Recently Spiked
7. Montana’s Trash Ends Up In Less Places
8. Replacing Montana’s Water and Wastewater Infrastructure Could Cost More than 500 Bobcat Stadiums
1. Much of the state’s 10,000 miles of drinking water and wastewater pipeline is reaching the end of its useful life, as most of the pipeline is more than 75-years-old in older communities and more than 30-years-old in newer communities.

2. The state’s aging irrigation canals and waterway system, which supports the agriculture industry, requires $343 million of investment for both privately and publicly owned systems.

3. Compared to the national average, Montana has only 35% of the average dam safety state budget per regulated dam.

4. Currently only a quarter of the state’s $14.8 billion of investment needs for the roadway and bridge system can be met.

5. Montana’s traffic fatality rate is third highest in the nation.

6. 66% of schools showed signs of damage and wear, as well as environmental needs such as HVAC, roof, and electrical issues.

7. The state’s school facilities require $903 million of investment to improve them to good condition.
Investment is Key: Map of the 2015 Infrastructure Projects and the Stories Behind the Projects

James Grunke
INFRASTRUCTURE INVESTMENT IS KEY TO ECONOMIC DEVELOPMENT
Infrastructure investment is key to economic development.

MEDA
MONTANA ECONOMIC DEVELOPMENT AGENCY
INFRASTRUCTURE INVESTMENT IS KEY TO ECONOMIC DEVELOPMENT

- OIL IMPACTED COMMUNITIES: $60,000,000
- BRIDGES: $533,898
- UNIVERSITIES / HIGHER EDUCATION: $52,650,000
INFRASTRUCTURE INVESTMENT IS KEY TO ECONOMIC DEVELOPMENT

- OIL IMPACTED COMMUNITIES: $60,000,000
- BRIDGES: $533,898
- UNIVERSITIES / HIGHER EDUCATION: $52,650,000
- QUALITY SCHOOLS: $29,887,715

MEDA (Montana Economic Development Association)
Infrastructure investment is key to economic development.

- Oil Impacted Communities: $60,000,000
- Bridges: $533,898
- Universities / Higher Education: $52,650,000
- Quality Schools: $29,887,715
- Water / Wastewater: $7,370,150
INFRASTRUCTURE INVESTMENT IS KEY TO ECONOMIC DEVELOPMENT

TOTAL FUNDS: $212,166,763

Next: 2:25 – 2:35 A Public Private Partnership Success Storu
A Public/Private Partnership Success Story: The Shiloh Crossing

Steve Corning
Real Opportunities: A Panel Dialogue on What Infrastructure Investment Means to Montana

Facilitated by Steve Arveschoug

2:45 – 2:55 Montana’s Urban Areas—City of Laurel Intake Project
Heidi Jensen, City Administrator

2:55 – 3:05 Montana’s Rural Areas—City of Conrad
Mayor Wendy Judisch

3:05 – 3:15 Montana’s Counties—Beaverhead County
Commissioner Michael McGinley

3:15 – 3:25 Higher Education—Deputy Commissioner for Communications and Human Resources
Kevin McRae

Next: 3:30 What Infrastructure Investment Means to Montana
Real Opportunities: A Panel Dialogue on What Infrastructure Investment Means to Montana

Montana’s Urban Areas
City of Laurel Intake Project
Heidi Jensen, City Administrator
City of Laurel Surface Water Intake
Within the Yellowstone River
Heidi Jensen – City Administrator
Presentation Outline

- General history of site, water source and intake structures
- What happened?
- Solution alternatives
- Chosen design
- Challenges in design and construction
- Left – 1955 Intake
- Below – 2003 intake in 2012 and under construction in 2003
What happened?

- **1955 Intake**
 - Unreliable in the winter – freezing
 - 1996-1997 flooding – the river migrated

- **2003 Intake**
 - Designed and constructed in response to 1996-1997 flooding
 - 2011 flooding caused bed scour and channel migration.

 intake is no longer submerged at low flows
Results of the 2011 Flooding

- Bed scour occurred beneath south spans of highway and railroad bridges
- Significant volume of material deposited beneath north spans of the adjacent bridges and extended upstream 500 feet
- Reduced the hydraulic capacity of the bridges
Submerged Intake

March 18, 2009 2,850 cfs
Approximately 12” over intake

September 21, 2012 2,760 cfs
Approximately 1” over intake
Results of the 2011 Flooding

- Loss of service occurred in January, 2012
- Winter low flows
 - Freezing of the submerged intake screens
 - Not able to produce treated water or supply industrial user with raw water
- Summer low flows
 - Pumps don’t function properly – insufficient
 - Construction of emergency weir in river to utilize 1955 intake and keep 2003 intake submerged
Moving forward from 2011

- Working with FEMA
 - Presidential disaster declaration FEMA-1996-DR-MT was issued due to the 2011 flooding
 - FEMA Public Assistance funds were made available to governmental agencies in response to the declaration

- Alternatives Analysis
Review by Permitting Agencies

- Proposed Alternative – W-weir
 - Would address both the lateral migration and degradation issues that plague the current intake
 - FWP & DEQ stated that a weir alternative would be extremely difficult to permit
First Round Proposed Alternative
W-weir
Moving forward from 2011

- Alternatives Analysis Round 2
- Draft Environmental Assessment
- Proposed Project
Alternatives Analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Alt. #</th>
<th>Alternative Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel training/alteration</td>
<td>1</td>
<td>Construct bendway weirs/rock vane</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Construct W-weir</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Construct straight weir</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Removal the sediment beneath north side of bridges</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Raise the channel grade</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Lower the existing intake screens</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Lower the existing intake screens with concrete modification</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Replace existing screens with half-round screens</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>‘V’ deflector installed downstream of intake</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Install hot water heater and appurtenances to utilize hot water flush lines</td>
</tr>
<tr>
<td></td>
<td>11A</td>
<td>Install inline booster pumps in WTP</td>
</tr>
<tr>
<td></td>
<td>11B</td>
<td>Install booster pumps in a new wet well</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Remove existing pumps, replace with dry pit submersible pumps</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Construct a new intake adjacent to the existing intake</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Construct intake 1600 feet downstream</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Construct new intake three miles upstream, adjacent to Canyon Creek Ditch</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Suspend pipe and intake from highway bridge</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Build new bridge to suspend intake and water line</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Construct diversion to holding pond</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Divert water from the Canyon Creek Ditch Co. ditch</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Divert water from the Billings Bench Water Assn. ditch</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Divert water from both ditches</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Groundwater Alternatives – hydraulic connectivity to the Yellowstone River: infiltration galleries, radial collector wells</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Vertical groundwater wells</td>
</tr>
</tbody>
</table>

Note: Highlighted alternatives were added after initial review in 2013
Alternative A

- Replace pumps, remove sediment, modify 2003 intake with half screens, hot water heater, construct new intake adjacent to existing, install W-weir
- Left – 2003 intake screens
- Below – proposed half round screens
Alternative B

- Construct new intake 3 miles upstream, modify 2003 intake, hot water heater
Alternative B

Canyon Creek Point of Diversion

Confining high bank

Approx. location of new intake

FLOW
Alternative C

- Construct infiltration gallery using trench method, modify 2003 intake, hot water heater
Draft Environmental Assessment

- Prepared in July 2014 per FEMA Region VIII guidelines
- Published for public comment in August 2014
- Identified Alternative B as the preferred alternative for Laurel
 - Significant benefit to public health and safety
Proposed Project

- New passive intake 3 miles upstream from WTP
- Major components;
 - Intake screens and protective enclosure
 - Control building
 - Transmission main
 - Connection to existing pump house
New Intake Location
Proposed Project – Screens

Left: intake exposed at low flows leads to ice buildup on the screens

Below: ice jam at new intake site
Proposed Project – Connection to WTP

- Railroad & Highway crossing
 - Very constrained laterally due to bridges
 - Very constrained on WTP side due to buildings and existing water mains
- Connection to existing pumps house
 - Continued use of 1955 and 2003 intake
 - Operation plan to switch between intakes
Proposed Project – Permitting

- Joint Application
 - SPA 124 Permit (FWP)
 - Floodplain Permit (Carbon & Yellowstone Counties)
 - Section 404 & Section 10 Permits (USACE)
 - 318 Authorization (DEQ)
 - 401 Certification (DEQ)
 - Navigable Rivers LUL or Easement (DNRC)

- MDT and BNSF Permits

- Water Rights – Change in Diversion (DNRC)
Proposed Project – Construction Challenges

- Construction in the river
 - Dewatering
 - Low flows
- Cannot start until irrigation season is over
 - October 15 through April 15
- High groundwater along transmission main route
- Coordinating connection to existing pump house
Proposed Project – Financing

- Total project cost = ~ $12 million
- 75% FEMA Public Assistance Grant
- 25% Local match

Schedule
- Final Design – July 2015
- Bidding – ????
- Construction – ?????
Community Impacts

- Refinery
- Fire Suppression
- Economic Impact
QUESTIONS

Heidi Jensen
hjensen@laurel.mt.gov
406-628-8456
Real Opportunities: A Panel Dialogue on What Infrastructure Investment Means to Montana

Montana’s Rural Areas—City of Conrad

Mayor Wendy Judisch
Real Opportunities: A Panel Dialogue on What Infrastructure Investment Means to Montana

Montana’s Counties – Beaverhead County Commissioner Michael McGinley
5,571 Square Miles
(larger than the State of Connecticut)

2010 Census:
9,246 people
112,000 cows

Total Miles of County Roads: 1,600 miles
County Maintained Bridges: 129
Average Age: 55
Structurally / Sufficiency Deficient: 40%

From Pt. A to Pt. B: 196 miles

BEAVERHEAD COUNTY, MONTANA
Prepared By James B. Carpita, PE
Beaverhead County Engineer
Montana Commuters Report: EXPECT SOME DELAYS

How about a ride?
<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Overall Length (ft)</th>
<th>Detour Req'd</th>
<th>Total Project Cost (dollars)</th>
<th>Year Completed</th>
<th>Notes</th>
<th>PER LN FT (dollars)</th>
<th>Installed by</th>
<th>Engineering</th>
<th>Funding Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lima - 3rd Ave.</td>
<td>LIMA-4</td>
<td>28</td>
<td>Y</td>
<td>$179,360</td>
<td>2009</td>
<td>Concrete 3-sided culvert</td>
<td>$6,405.71</td>
<td>contractor</td>
<td>consultant</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Governor Creek</td>
<td>NEW</td>
<td>65</td>
<td>Y</td>
<td>$411,150</td>
<td>2010</td>
<td>Tri-Deck on Piling</td>
<td>$6,325.38</td>
<td>contractor</td>
<td>consultant</td>
<td>USFWS</td>
</tr>
<tr>
<td>Nissan Lane</td>
<td>B03-D</td>
<td>22</td>
<td>Y</td>
<td>$186,940</td>
<td>2010</td>
<td>Concrete 3-sided culvert</td>
<td>$8,497.27</td>
<td>contractor</td>
<td>consultant</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Frying Pan Road</td>
<td>B04-D</td>
<td>30</td>
<td>Y</td>
<td>$161,585</td>
<td>2010</td>
<td>Concrete 3-sided culvert</td>
<td>$5,386.17</td>
<td>contractor</td>
<td>consultant</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Carrigan Lane</td>
<td>B19-D</td>
<td>30</td>
<td>N</td>
<td>$232,810</td>
<td>2010</td>
<td>Concrete 3-sided culvert on paved road</td>
<td>$7,760.33</td>
<td>contractor</td>
<td>consultant</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Dillon - RR Ave.</td>
<td>DILLON-3</td>
<td>47</td>
<td>N</td>
<td>$312,210</td>
<td>2010</td>
<td>Tri-Deck on Piling</td>
<td>$6,642.77</td>
<td>contractor</td>
<td>consultant</td>
<td>FEMA/CNTY</td>
</tr>
<tr>
<td>Dillon - Reeder St.</td>
<td>DILLON-2</td>
<td>47</td>
<td>N</td>
<td>$312,210</td>
<td>2010</td>
<td>Tri-Deck on Piling</td>
<td>$6,642.77</td>
<td>contractor</td>
<td>consultant</td>
<td>FEMA/CNTY</td>
</tr>
<tr>
<td>Birch Creek Road</td>
<td>B52-D</td>
<td>40</td>
<td>Y</td>
<td>$155,240</td>
<td>2011</td>
<td>Modular Steel</td>
<td>$3,881.00</td>
<td>county</td>
<td>county</td>
<td>RAC/CNTY</td>
</tr>
<tr>
<td>Anderson Lane</td>
<td>B10-D</td>
<td>40</td>
<td>N</td>
<td>$126,780</td>
<td>2012</td>
<td>Modular Steel</td>
<td>$3,169.50</td>
<td>county</td>
<td>county</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Steel Creek Road</td>
<td>B84-L</td>
<td>55</td>
<td>Y</td>
<td>$313,155</td>
<td>2012</td>
<td>Tri-Deck on piling</td>
<td>$5,693.73</td>
<td>contractor</td>
<td>consultant</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Bannack Bench Road</td>
<td>O09-D</td>
<td>55</td>
<td>N</td>
<td>$216,964</td>
<td>2012</td>
<td>Modular Steel on piling</td>
<td>$3,945.17</td>
<td>county</td>
<td>county</td>
<td>TSEP/CNTY</td>
</tr>
<tr>
<td>Argenta Road</td>
<td>O39-D</td>
<td>90</td>
<td>N</td>
<td>$251,030</td>
<td>2012</td>
<td>Modular Steel</td>
<td>$2,789.22</td>
<td>county</td>
<td>county</td>
<td>RAC/CNTY</td>
</tr>
</tbody>
</table>

TOTAL NEW CONSTRUCTION, 2009 ~ 2012

$2,859,454

Does not include maintenance projects

$5,208 PER LN FT

Corrine Trail

O42-D

18 N $29,560 2009 Used surplus materials $1,642.22

Dillon - Gendale St. Pedestrian Bridge

50 N $66,900 2010 Modular Steel

Dillon - Brookside Pedestrian Bridge

50 N $66,900 2010 Modular Steel
A professional genealogy researcher in southern California was doing some personal work on her own family tree. She discovered that a congressman's great-great uncle was hanged for horse stealing and train robbery in Montana in 1889. Both she and the congressman share this common ancestor.

The only known photograph of this great-great uncle show him standing on the gallows in Montana Territory with feet bound in shackles and the hangman placing the rope around his neck.

On the back of the picture she obtained during her research is this inscription - "Horse thief, sent to Montana Territorial Prison 1885, escaped in 1887, robbed the Montana Flyer Railroad six times, caught by Pinkerton detectives, convicted and hanged in 1889."

So she e-mailed the congressman for information about their great-great uncle. The congressman's staff sent back the following biographical sketch for her genealogy research:

"Your great-great uncle was a famous cowboy in the Montana Territory. His business empire grew to include acquisition of valuable equestrian assets and intimate dealings with the Montana Railroad. Beginning in 1883, he devoted several years of his life to government service. Finally taking leave to resume his dealings with the railroad in 1887, he was a key player in a vital investigation run by the renowned Pinkerton Detective Agency. In 1889 he passed away during an important civic function held in his honor when the platform upon which he was standing collapsed."

Now that is how it is done folks. That's a real political spin.
Real Opportunities: A Panel Dialogue on What Infrastructure Investment Means to Montana

Higher Education – Deputy Commissioner for Communications and Human Resources
Kevin McRae

Next: Breakout Sessions to Answer Two Questions
Breakout Discussions

3:30 – 4:10 PM

Developing a sustainable approach to infrastructure investment is key to Montana’s economic growth.

1. What are the key elements of a sustainable infrastructure investment program for Montana?

2. What are the immediate next steps that you want to see realized following today’s meeting, and who should be responsible for those next steps?

Next: Reports from Breakouts
4:10 – 4:45 PM

Reports from Breakout Discussions

1. Answers to: What are the key elements of a sustainable infrastructure investment program for Montana?

2. Answers to: What are the immediate next steps that you want to see realized following today’s meeting, and who should be responsible for those next steps?
DEFINE NEXT STEPS
THANK YOU FOR JOINING US TODAY!
WELCOME 2015 Fall Conference

LEADERSHIP DEDICATED TO BUILDING MONTANA'S ECONOMY